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Introduction 

Understanding the computations underlying the extraction of visual information through the 

hierarchical organization of brain areas is one of the main focuses in computational neuroscience. In 

this context, the MIT-challenge 2019 asked the participants to predict the representational structure of 

physiological responses to visual stimuli (in the form of representational dissimilarity matrices 

(RDM) (Kriegeskorte et al., 2008) measured with fMRI and MEG data (Cichy et al., 2016). The MEG 

dataset consisted of RDM matrices from 15 volunteers extracted in two temporal windows of the 

electrophysiological responses: 1) 100-120 ms (early) and 2) 165-185 ms (late), sampled in twenty 

time points each. The fMRI dataset consisted, for the same 15 volunteers, of the RDM in two cortical 

regions: 1) early visual cortex (EVC) and 2) the inferior temporal cortex (ITC). The training data, 

consisted of two sets of RDMs (obtained from responses to 92 and 118 images respectively). The 

challenge’s aim was to predict the RDMs (of the early/late MEG window and the EVC/ITC fMRI 

responses) of a test data set, which consisted of 78 images obtained from an independent sample of 

subjects. In addition to the MEG and fMRI data and the visual stimuli, the organizers provided 

participants with the representation of the training and test images by three different deep neural 

networks (DNNs - alexnet, vgg, and resnet) (Khaligh-Razavi and Kriegeskorte, 2014). 

 

General description of the algorithm 

We constructed four initial estimations of the RDM matrices (two for the MEG dataset and two for 

the fMRI dataset). Two of these initial estimations, used for the EVC-fMRI data and the early-MEG 

window, were based on purely perceptual features (i.e. edges) while the other two, used for the ITC-

fMRI data and the late-MEG window, were based on the categorical information extracted from the 

training data. The RDMs predicted by these initial models were then improved by weighted average 

using the RDMs derived from the DNNs features that were provided (see below).   

 

Initial model for perceptual RDMs 

 

The initial model for the perceptual RDM was based on three steps. First, images from the training 

and test sets were resampled to have the same number of pixels. Second, edges were extracted and 

finally gaussian smoothing was applied. Figure 1 shows the result of these transformations in one of 

the images of the training data. 

A (perceptual) RDM for a given set of images was obtained using as distance metric the overlap 

between the images after the feature extraction process (i.e. one minus the sum of the number of 

pixels overlapping between any pair of images).  

The number of pixels (n) used for the resampling procedure, the threshold for image edge 

extraction (t) and the size of the gaussian smoothing kernel (s) were optimized by maximizing the 

correlation between the predicted RDMs and the provided RDMs from the training data set. The 

resulting parameters were n = (100 x 100) pixels, t = 12 and s = 1 for the early-MEG window data 

and n = (166 x 166) pixels, t = 13 and s = 2 for the EVC-fMRI data. 
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Figure 1. The figure shows the features extracted for one image in the 92 training set. 

 

Initial model for categorical RDMs 

We manually labelled the images in the training data set with 92 images as belonging to eight 

categories (note that only the training set was used): 1) objects-scenes, 2) animals, 3) human, 4) fruits-

veggies, 5) faces, 6) hands, 7) monkeyfaces, 8) animal-faces. We then trained a gaussian naïve bayes 

(GNB) classifier to distinguish between these categories on the basis of the representation of the 

images by the fully connected layer of the vgg-FC8 network (1000 features). Prediction accuracy 

reached 90.22% using leave one-out cross validation in the 92-images set (Figure 2).  

 

 

Figure 2. (Left) Average leave-one-out classification performance on the 92-image set (per category 

and in average across categories). (Right) images in the test data that are predicted to be faces. 
 

 The 92-image set was then used to obtain a “categorical” (8 x 8) RDM by averaging the values of 

the initial 92 x 92 RDMs within blocks of images belonging to the same category. This categorical-

RDM was different for the late MEG data and the ITC fMRI data. 

 The test set images were assigned to one of the eight categories using the trained GNB classifier. 

Inspecting the result showed a high consistency among the test images classified as belonging to the 

same class (see e.g. on the right of Figure 2 we display the test set images that are predicted to be 

faces). To predict the RDM for the test set, we defined the distance between any pair of images to be 

equal to the distance between the corresponding predicted categories in the 8 x 8 RDM derived from 

92 image training set. Note that the categorical structure of the test data was only inferred by the 

classification algorithm based on the training data and not imposed a-priori.   

 

Improvement in model representations using DNN features 

The contribution of DNNs was included in the final perceptual and categorical models via a weighted 

average between the initial RDM (𝑅0) and an RDM derived from the DNNs (𝑅𝐷𝑁𝑁): 

 

 

 

We considered each of the provided DNNs separately. The 𝑅𝐷𝑁𝑁 matrices for the different networks 

were obtained for every block by averaging the activations across all features (e.g. conv1 in alexnet 

contains 64 feature maps of size: 55 , 55). Next the RDMs were obtained using the spearman 

 𝑅 = (1 − 𝑝0)𝑅0 + 𝑝0𝑅𝐷𝑁𝑁 Eq:1 
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correlation coefficient between the averaged maps for every pair of images. The weighting 

contribution (i.e. the parameter 𝑝0 in Eq. 1) was optimized in the training set for every modality and 

region (MEG-early MEG-late, fMRI-EVC and fMRI-ITC) separately. Figure 3 shows for each of the 

three networks provided the performance relative to the noise ceiling of every block as the 

contribution varies from 𝑝0 = 0 to 𝑝0 = 1 for the fMRI-EVC in the 92 (upper) and 118 (bottom) 

images set. Selecting those blocks that provided the largest improve in the training data the initial 

RDMs for the test data were combined with those RDMs derived from the DNN for the test set 

images. 

 
Figure 3. The figure shows the model performance relative to the noise ceiling for an increasing 

proportion of the DNN contribution into the RDMs (see Eq.1). This analysis corresponds to fMRI-

EVC dataset using the 92 and the 118 data sets. 
 

Results and Discussion 

Figure 4 (top row) shows the predicted RDMs for the initial perceptual (used for MEG-early and 

fMRI-EVC) and the categorical (used for MEG-late and fMRI-ITC) RDM estimations. The 

adjustment obtained by the weighted averaged of these initial representations with the DNNs based 

RDMs is visualized in the bottom row of Figure 4.  

In Table 1 we present, for both modalities and regions of interest, the noise normalized 

explained variance for the test data using the initial RDM estimation and the improvement obtained 

when the information from the DNN was added to the prediction. The reported values are based on 

submitting our predictions to the online system.  
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Figure 4. Top row: Initial RDMs estimation for MEG-early, fMRI-EVC, MEG-late and fMRI-ITC. 

Bottom row: corresponding RDMs obtained after including the contributions of the DNNs.  
 

The initial RDM estimation already captures a large proportion of the total noise normalized 

explained variance that was achieved by the combined model (that includes DNNs). Except for ITC 

all the RDM predictions improved with the contributions from DNNs. However, the improvement 

obtained from the DNNs observed in the training data was not often reproduced in the test data when 

the predictions were evaluated via the online submission system. Among the provided DNNs, the vgg 

network was the one that contributed the most to improve the predicted scores.  

 

Table 1: Contributions of the initial RDMs and the DNN-RDMs to the model performance. 

 fMRI Noise Normalized R.^2 

(%) 

meg Noise Normalized 

R.^2 (%) 

 EVC ITC Early Late 

Initial RDM 25.20 20.99 45.28 44.43 

DNN 

contribution 

32.88 

vgg-b3 

vgg-b4 

vgg-b5 

- 50.95 

alexnet 

b3,b5 

53.59 

alexnet b5 

vgg b5 

resnet      b4 
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