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Abstract

We describe the second place solution in the Algo-
nauts 2021 Challenge How the Human Brain Makes
Sense of a World in Motion on predicting fMRI brain
activations of human subjects watching movie clips.
The Deep Neural Network features are projected to
a varying number of receptive fields and aggregated
over time, by taking the maximum in both cases. We
observe a passage from local to more global features
within the visual hierarchy. We introduced also a
set of motion related data, extracted from the movie
clips.

1 Introduction

The Algonauts challenge in 2021 [I], comprises the
prediction of fMRI activations of 10 subjects while
watching 1102 movie clips of 3s duration. The train-
ing data consists of 1000 clips shown with 3 repe-
titions for training the predictive models, while the
predictions were evaluated by the organizers on the
activations of the remaining 102 clips, which were
shown with 10 repetitions.

The competition involved the predictions of (reli-
able) voxels from the V1, V2, V3, V4, EBA, FFA,
LOC, PPA and STS ROIs within the mini-track, and
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a selected part of the whole brain within the full-
track.

The key motivation for us for entering the compe-
tition was on the one hand, checking how such con-
temporary Deep Learning approaches as contrastive
learning or transformers would fare in comparison
to the more traditional Deep Learning classification
models, and on the other hand to explore the intu-
itions about the relation of the visual hierarchy with
the structure of Deep Neural Networks.

In both of these questions, the results were not
entirely in line with our prior expectations. An addi-
tional intriguing question was how the dynamic time-
dependent character of the movie clips would get re-
flected in the fMRI activations.

2 Key ingredients
We primarily adopted a straightforward pipeline con-
sisting of

1. Evaluating neural network features for the sub-
sampled individual frames

2. Coarse-graining the features into appropriate re-
ceptive fields

3. Accumulating the features across all the frames

4. Fitting a Ridge regressor on the resulting fea-
tures and the means of the fMRI activations
coming from the 3 repetitions
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Figure 1: Cross-validated R correlation score for sub-
sequent layers of resnet152 for V1, V4, LOC, EBA,
FFA, PPA & STS and resnet50 for V2 and V3. The
lines serve to guide the eye.

Additionally, the features were optionally augmented
by separately estimated observables related to overall
movement between the frames. Below we discuss in
turn each of the above ingredients.

Cross-validation procedure. We adapted 5-fold
cross-validation for each subject. The movie clips
were shuffled differently for the individual subjects
in order not to introduce an overall bias. The models
were scored by the average R over all subjects and
folds.

Neural networks. We tested the classical
alexnet, vggl9, and various ResNets as well two
types of contrastive learning networks pclv2 [2]
and simclr [3] and an implementation of a visual
transformer network [4].

The outcome was that the best CV results for all
ROIs were obtained by the two largest ResNet net-
works: resnet50 (Vﬂ and V3) and resnet152 (all
other ROIs). In fact, the latter network was also
quite close to the best scores also for V2 and V3, so
it could be considered as the best overall.

n this case an intermediate layer of pclv2 was marginally
better, but we did not use it.
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Figure 2: Cross-validated R correlation score for all
ROIs calculated using variants with taking average
or maximum over frames (avg or max) and over each
receptive field (marked by avgpool or maxpool). The
best performance is obtained by taking the maximum
in both cases.

The more modern neural network approaches and
in particular the final contrastive features unfortu-
nately did not give competitive results.

Neural network layers. For the ResNet net-
works, we extracted features from 4 intermediate lay-
ers (for the sizes of the layers look up Table 1)) and
the final classification layerﬂ Using CV we identi-
fied the layer which gives the highest R score for a
particular ROI. Surprisingly enough, the same layer
(1layer2) provided the best explanation of the brain
activations for all ROIs apart from V1, for which an
earlier layer (layer1) was better (see Fig. [I)).

The ROIs located
layer0 | (256x56x56) higher in the visual hi-
layerl | (512x28x28) erarchy did not benefit
layer2 | (1024x14x14) by going deeper into
layer3 | (2048x7x7) the neural network but
layer4 | (1000) rather by accumulating

features into larger

receptive fields as we
discuss now.

Table 1: Layer sizes of em-
ployed ResNet networks.

2To this end, we used some of the code from the previous
Algonauts challenge [6].



Receptive fields. The solution of one of the au-
thors [5] to the previous Algonauts challenge [6] in-
dicated that it is beneficial to reduce the resolution
of the original neural network features using a set of
“receptive fields” by taking the maximum over the
receptive ﬁeldsEI, reducing thus the effective spatial
resolution of the features to 7x 7, 5x 5, 3 x 3 or even
2 x 2. We observed a clear correlation of the optimal
resolution with the location of the ROI in the visual
hierarchy (7x 7 for V1, V2 and V3, 5x 5 for V4, 3x3
for EBA, FFA, LOC, PPA and 2 x 2 for STS).

We compared two methods of evaluating the fea-
tures for a given receptive field: taking the maxi-
mum or the average (see Fig. . We found that
the first method gives consistently better results, in
agreement with the findings in [5].

Accumulating features across frames. The
short duration of the clips and the relatively long
time-scale of the fMRI response suggests that one
should somehow integrate the features from all movie
frames and only use that for prediction. This could
be done by averaging over frames, as was done in the
Starter Kit provided by the organizers. We found,
however, that a better strategy was to take the maz-
imum over the time frames (see Fig. .

Machine learning regression model. We fit the
resulting accumulated features to the mean activa-
tion of the given voxels using a simple Ridge regressor
with the regularization parameter v = le4. We ex-
perimented with some nonlinear approaches but did
not observe a benefit, probably due to the very high
dimensionality of the data.

3 The baseline solution

The elements of the baseline solution for each ROI
are summarized in Table 2l In all cases we take the
maximum over the receptive fields and the maximum
over movie frames. The test score of this solution
0.6446 would already be in the 2"¢ place slot of the
competition.

3Using the standard PyTorch adaptive_max_pool2d.

ROI | network layer res. test score
V1 resnet152 layerl 7 x 7 | 0.6497
V2 resnetb0  layer2 7 x7 | 0.6564
V3 resnetb0  layer2 7 x 7 | 0.6495
V4 resnet152 layer2 5 x5 | 0.6822
LOC | resnet152 1layer2 3 x3 | 0.6872
EBA | resnet152 1layer2 3 x3 | 0.7070
FFA | resnet152 1layer2 3 x3 | 0.7065
PPA | resnet152 1layer2 3 x3 | 0.5731
STS | resnet152 layer2 2 x 2 | 0.4900
OVERALL 0.6446

Table 2: Details of the baseline solution for the indi-
vidual ROIs.

In the following we describe additional improve-
ments on top of this baseline solution.

4 Incorporation of movement

The overall approach outlined in section [2} does not
take into account the dynamic character of the movie
clips. In particular the constructed features would
not distinguish between an essentially static image
and a clip with lots of motion.

One option to incorporate some of this information
would be e.g. to add the difference of extracted neural
network features between the last and first frame.
This did not help, however, probably due to the very
high dimensionality of the features in comparison to
overall number of movie clips. We decided therefore
to introduce features which were sensitive purely to
movement irrespective of the semantic content of the
movie clips.

We first estimated the vectors of frame by frame
displacements by finding the shift in pixels in the
range (—15,15)x (—15, 15) which minimizes the mean
square distance between one frame and the shifted
succeeding frame. We also repeated similar anal-
ysis for 9 square patches of each frame. We then
took the mean displacement over all frames obtain-
ing 24+ 2 x 9 = 20 features. We also added the ab-
solute values of those mean displacements to allow
for sensitivity of the brain activations to the overall
magnitude of the motion irrespective of direction.



ROI | Agcore We show alongside the
V1 0.0022 difference between the test
V2 unknown scores of models with the fea-
V3 0.0008 tures from the baseline so-
V4 0.0040 lution with movement added
LOC | 0.0007 and the original baseline
EBA | 0.0033 scores.

FFA | 0.0002 We observe that the move-
PPA | 0.0089 ment features give a small
STS | -0.0010 but noticable improvement

for V4 (somewhat unexpect-

edly) and for PPA. For the fi-
nal solution for these two ROIs we therefore add the
movement features, leaving the rest for the moment
unmodified.

5 Refining the receptive fields

Since the reduction of the higher resolution neural
network features by taking the maximum over some
receptive fields was very beneficial for the scores of
the higher visual areas, we decided to investigate
whether changing the sizes and/or overlaps of the
receptive fields with respect to those given by the
PyTorch adaptive_max_pool2d would better reflect
the brain activations. Indeed, we observed benefits
for the EBA, FFA, LOC and STS ROlIs.

The resnet152’s layer2 features have a spatial
resolution of 14 x 14. The baseline receptive fields for
the STS ROI were thus

[0,6]x[0,6], [0,6]x[7,13], [7,13]x]0, 6], [7,13]x[7,13]

which can be understood as a cartesian product of
the intervals {[0, 6], [7, 13]}. We found that adding an
additional large central receptive field [2,11] x [2,11]
was beneficial. But, surprisingly enough, one could
then replace the previous 4 squares by the overall
frame. So for STS we finally take

[0,13] x [0,13] and [2,11] x [2,11]

This essentially means that STS responds best to
completely global features.

For EBA, FFA and LOC, which in the baseline
solution had 3 x 3 = 9 receptive fields, we also adjoin

receptive field ‘ EBA FFA LOC STS

standard 0.7070 0.7065 0.6872 0.4900
modified 0.7129 0.7161 0.6950 0.4930

Table 3: Comparison of test scores for the standard
and modified variants of receptive fields.

the large central receptive field [2,11] x [2,11]. In
addition, we make the original 3 x 3 receptive fields
larger and overlapping. They are given by a cartesian
product of

{[0, 5], [3,10], [8,13]}

The central receptive field in the cartesian product
could possibly be made slightly larger and the addi-
tional one eliminated, but due to lack of time, we did
not test that.

In Table [3] we compare the test scores for the mod-
ified receptive fields with the original baseline ones.

6 The final solution

In Table [4] we present our final solution. It improves
somewhat on the baseline one but still remains at the
274 place.

ROI | network layer res. test score
V1 resnet152 layerl 7x 7 | 0.6497
V2 resnetb0  layer2 7x 7] 0.6564
V3 resnetb0  layer2 7x 7 | 0.6495
V4 resnetl152 layer2v’ 5 x5 | 0.6862
LOC | resnet152 layer2 mod. | 0.6950
EBA | resnet152 layer2 mod. | 0.7129
FFA | resnet152 layer2 mod. | 0.7161
PPA | resnet152 layer2v’ 3 x 3 | 0.5820
STS | resnet152 layer2 mod. | 0.4930
OVERALL 0.6490

Table 4: Details of the final solution for the individual
ROIs. The modified receptive fields are marked by
mod. and are described in section A checkmark
v’ indicates that the movement features described in
section ] were added.



7 The whole brain solution

For the whole brain solution, we did not pursue an
independent construction but rather reused the best
models developed for the individual ROIs. Since, as
we saw, the features entering the best models for the
various ROIs were different, we may expect that for
the voxels in the whole brain a single model would
not suffice, and one should choose a specific model
for a particular voxel. We do not expect that con-
catenating the features from all these models would
work well due to the large dimensionality, but we did
not have time to verify whether this is indeed the
case.

In order to associate a given model prediction to
a particular voxel, we performed cross-validation on
the whole brain data for all the models used for the
individual ROIs, but now computing the R’s for the
individual vozrels. Then for the whole brain predic-
tion we used the prediction of the model with the
highest CV score for the particular voxel. For the
models from the baseline solution this procedure gives
0.3422 test score for the whole brain, while for those
from the final solution we get 0.3483.

We noticed, however, that the individual voxel CV
scores may be quite noisy and not being a very good
predictor of the optimal model. This problem ap-
pears when trying to apply the same procedure to a
wider range of models as good individual voxel CV
scores may also appear purely by chance. As an alter-
native, for the final whole brain solution, we overrode
the choice from voxel CV scores for voxels belonging
to one of the ROIs from the Mini-Track. In that case
we used the model chosen for the particular ROI. We
obtained a small test score increase to 0.3490. This
suggests that some spatial “smoothing” of the model
choice for the individual voxels might be beneficial
and worth investigating. All the whole brain solu-
tion described here have test scores in the 2¢ place
slot in the competition.

8 Discussion

Our main observations in the process of working on
solutions to the competition are as follows. The

biggest variants of resnet networks outperform oth-
ers with resnet152 being the best for the majority
of ROIs. The more recent constructions involving
transformers and contrastive learning unfortunately
seem to be further removed from the human visual
system. Despite expectations, we do not observe an
increase in the optimal layer deptlrﬁ correlated with
the place of the ROI in the hierarchy of the visual
system. Indeed the intermediate layer?2 is optimal
for 8 out of 9 ROIs (see Fig. [I). The main differ-
ences between the ROIs lies in aggregating features
within different receptive fields, going to more global
ones for the higher-level ROIs. The aggregation is
optimally performed by taking the maximum rather
than averaging (see Fig. , indicating that the brain
acts primarily within the winner-take-all paradigm.
A similar conclusion holds for aggregating over time.
Moderate improvements can be obtained by adding
movement related features (primarily for PPA and to
a lesser extent V4), and enlarging the receptive fields
with some overlap between the neighbouring ones for
the higher level ROIs. The STS ROI seems most sen-
sitive to almost completely global features.
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