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Data preprocessing
Provided videos have length of 3 seconds but with frames per second varying from 15 to 30. To avoid 
padding and different input lengths all videos were resampled to 5 FPS and the number of frames per 
second of the original video was used as an input for the model. Adding FPS value as input had positive
impact on the model performance while higher FPS or not resampling videos did not. All videos were 
also resized to 224*224 pixels. To avoid overfitting random number of frames was skipped before re-
sampling to make sure different frames are sampled each time and following augmentations were ap-
plied: Shift Scale Rotate, Random Perspective change, Coarse Dropout, Random Brightness.

Training
To increase the number of samples for training all possible combinations were generated from the 3 
provided repetitions resulting into 7 samples for each video per participant. This greatly improved the 
ability of the model to generalize and resulted into better score. Output of the model was validated on 
mean values over the repetitions to follow the method of final evaluation.

First 900 videos from the training dataset were used for training and last 100 for validation. Training 
was done for 4 epochs with the following setup: Adam optimizer with default parameters for Model A; 
AdamW with 0.2 weight decay for Model B; PyTorch OneCycleLR scheduler (max LR = 0.001; 
div_factor=10; final_div_factor=1; pct_start=0.1). Using different optimizers for each model intro-
duced more variety into the ensemble and resulted into small score improvement.

Weighed mean square error was used as loss function:
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where y is the target value, ŷ the output of the model and W is the weight of the sample. Weight was 
calculated for each voxel sample based on the absolute target activity as follows

W ( y )= 1
exp(−|y|)
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and clamped to minimum value of 0 and maximum 2
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W , 0<W <2
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.
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The target voxel activity has normal distribution so using mean square error loss function without the 
weights resulted in most activity being predicted around zero. Giving more weight to the samples with 
higher absolute voxel activity reduced the negative impact of target value imbalance.

Different models were trained for each participant and each track predicting activity of all their voxels 
simultaneosly.

Models
Each frame of input video was processed by pretrained model from PyTorch Image Models library 2. 
The parameters of the pretrained model were frozen so they were not updated during the training. For 
Model A  eca_nfnet_l0 was used and for Model B resnet50 as a backbone model. Features from each 
layer of the backbone model were pooled, concatenated and used as input for a Linear layer to create fi-
nal features for each frame (512 for Model A, 1024 for Model B). 

Using features from all layers of frozen model resulted in better score than using any single one of 
them separately, or even unfreezing the parameters and fine tuning the backbone model.

Model A used maximum and average pooling (1 output value per feature per pooling method). Model B
included additional pooling using Linear layers. Output of each backbone feature layer 3 was flattened 
(resulting in feature space [64, 12544]; [256, 3136]; [512, 784]; [1024, 196]; [2048, 49]) and used as 
input for 6 Linear layers per each block 4. In total Model B pooled 8 values (6 using Linear layers, 
1from maximum pooling and 1 from average pooling) for each feature (3,904 in total). 

2 https://github.com/rwightman/pytorch-image-models
3 total 5, with feature sizes: [64, 112, 112]; [256, 56, 56]; [512, 28, 28]; [1024, 14, 14]; [2048, 7, 7]
4 nn.Linear(12544, 6); nn.Linear(3136, 6); nn.Linear(784, 6); nn.Linear(196, 9); nn.Linear(49, 6)

Figure 1: Video encoder. Each frame of video is processed by frozen pretrained model. Features from
all layers are pooled, concatenated and used as input to create final features. Output has sequence
length (15) with either 512 (Model A) or 1024 (Model B) features.



Minimum, maximum, average and standard deviation was calculated for each feature over the sequence
and concatenated with values from last frame and original FPS value of the video. These features 
(5*512 + 1) were then used to predict voxel response to input video in Model A (Figure 2).

Model B contains additional block with 3 GRU modules (hidden size 512, layers: 1, 2, 4) that take gen-
erated sequence of features as input and add the last output from sequence of each GRU module to fea-
tures used for voxel activity prediction (Figure 3).

All linear layers in encoder and decoders are using weight normalization. 5 6

5 https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
6 https://arxiv.org/abs/1602.07868

Figure 3: Model B Feature decoder. Features from last frame, values calculated over
the sequence (minimum, maximum, mean, std), original video FPS and last output
from 3 GRU modules are used to predict voxel activity.

Figure 2: Model A Feature decoder. Features from
last  frame,  values  calculated  over  the  sequence
(minimum,  maximum,  mean,  std)  and  original
video FPS are used to predict voxel activity.



Model A Model B

Backbone
(features per layer)

eca_nfnet_l0 
(64; 256; 512; 1536; 2304)

Resnet50 
(64; 256; 512; 1024; 2048)

Feature pooling Max (1), Avg (1);
(total 9,344 features per frame)

Max (1), Avg (1), Linear (6);
(total 31,232 features per frame) 

Frame embed size 512 1,024

Sequence 
features

Last frame, minimum, maximum, 
mean, standard deviation;
(total 2,560 features per video)

Last frame, minimum, maximum, mean, 
standard deviation, last output of 3 GRU 
modules (512 hidden size, layers 1, 2, 4); 
(total 6,656 features per video)

Final features Sequence features, FPS Sequence features, FPS

Optimizer Adam AdamW (weight decay = 0.2)

Table 1: Model comparison

Prediction, model selection and ensembling
During prediction test data were preprocessed the same way as validation data. Videos were resampled 
to 5 FPS and resized to 224 * 224 pixels. No additional test time augmentations were used.

For Mini Track models from last training epoch were used to create prediction on test data, while for 
Full Track the models with best validation score were used. 

Final prediction was calculated as average output of Model A and B for each participant and track.

Results

Score LOC FFA STS EBA PPA V1 V2 V3 V4

Baseline 0.170 0.175 0.090 0.191 0.115 0.200 0.183 0.166 0.139

Model A 0.253 0.295 0.269 0.176 0.312 0.208 0.208 0.203 0.202 0.184

Model B 0.235 0.258 0.228 0.143 0.280 0.177 0.242 0.236 0.227 0.200

A + B 
ensemble

0.266 0.299 0.267 0.172 0.317 0.206 0.255 0.250 0.243 0.217

Table 2: Mini Track validation results calculated as mean score over 10 participant. For validation last
100 videos from training dataset were used.



Score

Baseline 0.069

Model A 0.131

Model B 0.125

A+ B ensemble 0.139

Table 3: Full Track validation results calculated as mean score over 10 participants. For validation
last 100 videos from training dataset were used.

Score LOC FFA STS EBA PPA V1 V2 V3 V4

Baseline 0.420 0.439 0.504 0.332 0.444 0.348 0.444 0.434 0.405 0.428

Model A 0.522 0.626 0.698 0.476 0.616 0.553 0.397 0.398 0.436 0.498

A + B 
ensemble

0.571 0.647 0.707 0.484 0.647 0.550 0.499 0.502 0.522 0.580

Table 4: Mini Track test results

Score

Baseline 0.206

A+ B ensemble 0.312

Table 5: Full Track test results

Discussion and further improvements
Model A performed better for higher-level regions (LOC, FFA, STS, EBA, PPA), while Model B had 
better score in early and mid-level visual cortex (V1, V2, V3, and V4). The difference was caused by 
pooling using Linear layers, simple max and avg pool does not seem to capture features important for 
ROIs V1 to V4. GRU modules in Model B had minimal impact on score but were kept to introduce 
more variety into ensemble.

Adding number of frames per second as a feature had positive impact on the prediction accuracy and 
seems to be important feature. 

Both models easily overffited to training data so reducing the number of parameters or using methods 
like Mean teacher 7 or Stochastic Weight Averaging 8 could be useful for better generalization.

Esembling models led to significant score improvement. Training models in cross validation manner, 
using test time augmentations or adding models with different backbones and pooling methods could 
improve score even further.

7 https://arxiv.org/abs/1703.01780
8 https://arxiv.org/abs/1803.05407
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