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1 Introduction

Deep neural networks have been widely adopted as state-of-the-art models of the visual ventral
stream (e.g. Cadieu et al., 2014; Yamins and DiCarlo, 2016; Cichy et al., 2016). Most studies have
focused on predicting neural responses to static visual stimuli. But arguably the majority of human
visual processing involves movement and dynamic scenes. The 2021 Algonauts challenge (Cichy
et al., 2021) attempts to address this forefront of current research and focuses on explaining human
neural responses to short video stimuli. Participants were tasked to predict fMRI voxel activity
for 10 subjects who viewed short video clips of moving objects and humans. The challenge was
divided into two tracks: A mini-track focusing on a set of 9 regions of interest (ROI) and a full-track
emphasizing whole brain activity. In the following report we outline our 5th place solution approach
to the mini-track and share insights gathered through exploration and hypothesis testing.

Solution approach. Our solution is based on a self-supervised pre-trained ResNet-50 network
(SimCLR-v2; Chen et al., 2020b), which was fine-tuned on supervised ImageNet labels. After
extracting the layer-wise features for the video frames, we temporally mean-aggregate the individual
activations and reduce their dimensionality using principal component analysis (PCA) to 50 features.
Afterwards, we run a Bayesian Optimization (BO; Snoek et al., 2012) loop to tune the number of
components in a partial least squares (PLS) regression encoding model. The BO procedure is layer-,
subject- and ROI-specific and optimizes a 10-fold cross-validated (CV) correlation metric. We select
the combination of best performing network layer and encoder hyperparameter and retrain a final
PLS encoding model on all datapoints. The general pipeline is depicted in figure 1.

Figure 1: Proposed general solution pipeline consisting of 6 steps: We extract neural network features by
computing layer-wise activations for a set of video frames. The frame activations are temporally aggregated and
dimensionality reduced. Based on the preprocessed features we train encoding models to predict normalized
voxel activity. The hyperparameters are tuned using CV and BO. Finally, the best layer activations and encoder
hyperparameters are used to fit a final encoding model, which predicts the test set activity. Steps 1 and 2 can be
computed once and amortized, while steps 4, 5 and 6 are computed in parallel for all subjects and ROIs.

∗Code to replicate the results can be found at https://github.com/RobertTLange/algonauts-2021.

https://github.com/RobertTLange/algonauts-2021


Compute resources. We precompute all layer-specific network features, their temporal aggregation
and the compression on a GPU accelerator. Depending on the chosen video sampling rate, com-
pression technique, network architecture and number of network layers, this pre-processing takes
between 2 and 5 hours. Afterwards, we parallelize the encoding model optimization routine across
ROIs and subjects using the MLE-Toolbox (Lange, 2021) on a CPU cluster. Each individual BO loop
requires between 2 and 4 CPU cores and lasts between 2 and 4 hours depending on the number of
feature dimensions, encoding model and fitted voxels. Given a pre-trained feature extractor network
the entire pipeline takes between 4 and 9 hours.

2 Initial Exploration of the Solution Space

The space of possible solution attempts is vast and impossible to search through exhaustively. We
therefore initially focused on exploring the impact of three main ingredients: The neural network
architecture used to extract frame-dependent features, the dimensionality reduction technique used to
compress the layer-wise activations and the encoding model used to predict ROI- and subject-specific
voxel activations. In order to compare the different ingredient configurations across all subjects, we
computed subject-aggregated ROI-fit scores by calculating a weighted average of subject-specific
correlation scores. The subject-ROI weight is computed as the ratio of subject-specific ROI voxels
and total ROI voxels across all individuals (see SI B). Our insights are summarized as follows:

Figure 2: Exploration of different dimensions of the solution space. Left: Neural Network Architectures.
Middle: Dimensionality Reduction Techniques. Right: Encoding Models.

Neural Network Features. We evaluated a set of common convolutional neural network architectures
including VGG-19, residual networks of different sizes and several others (figure 2 left). To do so,
we fixed the compression technique (PCA-50) and encoding model (PLS). We observed that all
models tend to perform qualitatively similar across different ROIs and that larger ResNet architectures
generalized better. Only the AlexNet baseline performed fairly poor, indicating the importance of
top-down task performance (i.e. classification accuracy on ImageNet (Deng et al., 2009)).

Feature Compression Techniques. Next, we were interested in whether linear dimensionality reduc-
tion is sufficient to capture the relevant variation in network activity. We compared CV correlation
scores for a simple multi-layer perceptron (MLP) auto-encoder (AE), multi-dimensional scaling
(MDS; McInnes et al., 2018), UMAP (Cox and Cox, 2008) and PCA with different compression
dimensionality. Figure 2 (middle) reveals that both PCA-50 and MDS-100 provide comparably strong
performance for ResNet-50 features with downstream PLS encoding. Using more feature dimensions,
on the other hand, quickly hinders generalization, highlighting the risk of overfitting.

Encoding Models. Finally, we compared several encoding approaches and chose to fix ResNet-50
features and PCA-50 compression. We compared multi-output linear regression, elastic net (Zou and
Hastie, 2005), MLP, PLS, canonical correlation analysis (CCA Thompson, 1984), canonical PLS and
orthogonal matching pursuit (OMP) encoders. Both PLS regression and MLP encoding resulted in
the best encoding correlation scores across all ROIs (figure 2 right). Due to computational and data
amount considerations we decided to further focus primarily on PLS regression.
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3 Proposed Solution: SimCLR-v2, PCA-50 & PLS Regression

We wondered whether network features resulting from pure supervised training were suitable for
predicting neural responses to moving stimuli. Active vision involves partially noisy data measure-
ments resulting from saccades and top-down attention processes. We therefore hypothesized that
a self-supervised pre-training procedure, which relies on random data augmentations may yield
more robust and predictive features. Furthermore, unsupervised models were previously successfully
explored as models of the visual cortex (Nayebi et al., 2021; Zhuang et al., 2021). We focused our
attention on a recently proposed self-supervised training paradigm: SimCLR (Chen et al., 2020a,b)2.
SimCLR relies on a set of random data augmentations and a contrastive learning objective (see figure
3 left), which promotes similar representations to result from augmented versions of the same image
(positive pair) and dissimilar representations for different base images (negative pair). SimCLR-v2
(Chen et al., 2020b) additionally proposes to afterwards fine-tune on a subset labeled images and
to perform student-teacher distillation on unlabelled examples. Due to the observed importance of
task-specific performance when fitting neural responses (see section 2, we used SimCLR-v2 ResNet
networks, which were fine-tuned on 100 percent of ImageNet labels.

Figure 3: Self-Supervised SimCLR-v2 solution. Left: Illustration of contrastive learning paradigm. Figure
taken from Chen et al. (2020a). Right: Performance of different SimCLR-v2 pre-trained models for different
ROIs. ResNet-50 features with PCA-50 and without increased channel width perform best.

Figure 3 (right) depicts the weighted voxel-prediction correlation for different sizes of SimCLR-v2
ResNets (with/without selective kernels and increased channel width). The ResNet-50 architecture
without increased channel width performs best across all ROIs. This model configuration was used
in our final submission. We provide more information about the layer-wise performance and BO
procedure in figure 5.

4 Additional Experiments: Temporal Aggregation, VOneNets & Auto-ML

This section summarizes further explorations which did not yield significant improvements. Nonethe-
less, we believe that there may be valuable insights to be gained:

Temporal Filtering. The raw fMRI is processed using adaptive temporal filters in order to extract an
estimate of the hemodynamic response. We wondered whether a similar filtering of layer activations
over time (video frames) might improve their predictivity. We created convolution kernels using a
double gamma formulation:

K(t; peak, under, βunder) = Gamma(t, peak)− βunderGamma(t, under),

where Gamma, under, peak denote the Gamma distribution density and shape parameters. We
convolve the unit activity recorded from network layers across video frames and mean the signal

2We rely upon the official pre-trained checkpoints which were converted to be PyTorch (Paszke et al.,
2019) compatible. The checkpoints may be found here: https://github.com/google-research/simclr.
Furthermore, the conversion code is available at https://github.com/Separius/SimCLRv2-Pytorch.
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(figure 4, top). When comparing different values for peak, under, βunder, mean and median temporal
aggregation we surprisingly did not find a significant differences. We also validated several levels of
temporal downsampling of video frames and did not find a strong effect (figure 4, bottom left).

VOneNetworks. As of writing the top-4 neural and behavioral predictivity models on the BrainScore
benchmark (Schrimpf et al., 2020) are provided by different VOneNet architectures (Dapello et al.,
2020). It was a natural question whether these architectures, which exchange the first layer with a
stochastic biology-informed Gabor Filter bank, would perform well in predicting BOLD responses to
video snippets. We found that Cornet-S (Kubilius et al., 2019) provide the best base architecture for
the VOne frontend. Neither adversarial training nor eliminating of stochasticty improved the VOne-
Resnet-50 score. Furthermore, the VOne-Cornet-S test score obtained on the holdout dataset did not
exceed the SimCLR-v2 submission. This raises the question whether low-level physiology-inspired
models generalize from fitting invasive macaque recordings to the challenge’s fMRI setting.

Auto-ML. We briefly experimented with replacing the BO loop with an Auto-ML procedure, Auto-
Sklearn v.1.0 (Feurer et al., 2019). Is the focus on a single compression technique and encoding model
class across all subjects and ROIs too restrictive? This appears not to be the case (results not shown):
While the best Auto-ML activity predictions did significantly better on the training data, they did
not generalize well to the unseen test data. We note that this may be due to a fairly restrictive search
resulting from heavy disk space requirements or insufficient tuning of the Auto-ML parameters.

Figure 4: Additional investigations. Top: Illustration and evaluation of temporal feature aggregation approaches.
Bottom: Sampling rate comparison & VOneNets (Dapello et al., 2020) evaluation for different base architectures.

5 Conclusion

We introduced a general BO-based pipeline to cross-validate different ingredients to the encoding
procedure. This pipeline was leveraged to compare the capabilities of model architectures, compres-
sion and encoding methods to fit neural activity resulting from small video snippet stimulation. We
found contrastive pre-training and supervised fine-tuning yield a powerful feature extractor, which
fits neural variation well. If there had been more time we would have liked to further investigate the
following questions:

• Prediction ensemble. How to combine predictions from several encoding models?
• Cross-subject/ROI encoding. How to maximally leverage the sparse training signal?
• Transformer-CNN hybrids (e.g. d’Ascoli et al., 2021). What is the right amount of inductive

bias?

Finally, we thank the organizers for putting together this exciting challenge and the open source
community for public network checkpoints and software infrastructure.
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A Bayesian Optimization Hyperparameter Ranges

Encoding Model Parameter Min Max Variable Type Prior

OLS L2 λ 1e−07 1e−01 Real U
Elastic Net α 0.01 0.25 Real U

L1 Ratio 0.01 1 Real U
MLP No. hidden layers {1, 2, 3, 4} Categorical U

No. hidden units {64, 128, 256, 512} Categorical U
Activation fct. {ReLU, PReLU, leaky ReLU,ELU} Categorical U
Optimizer {Adam,RMSProp} Categorical U
Learning rate {1e−05, 5e−05, 1e−04, 5e−04, 1e−03} Categorical U
Weight decay {0.0, 1e−07, 1e−06, 1e−05} Categorical U
Dropout {0.0, 0.1, 0.2} Categorical U

PLS No. components 1 100 Integer U
CCA No. components 1 50 Integer U
C-PLS No. components 1 50 Integer U
OMP Non-zero Coeffs. 1 50 Integer U

Table 1: Encoding hyperparameter ranges to tune with Bayesian optimisation (25 iters. per feature layer).

B Final Submission Evaluation Details

Figure 5: Additional results for SimCLR-v2 encoding. Left: Layer-wise voxel-weighted CV correlation scores.
Later layers fit EBA, FFA, LOC, PPA and STS well, while earlier layers excel at fitting the ventral stream
(V1-V4). Right, Top: Bayesian optimization best score dynamics across all SimCLR-v2 layers for subject 3 and
V1. Right, Bottom: Best CV score and layer id for each subject and region of interest.
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