The Natural Scenes Dataset (NSD): massive high-quality whole-brain 7T fMRI during visual perception and memory

Kendrick Kay
http://cvnlab.net

Center for Magnetic Resonance Research (CMRR) University of Minnesota, Twin Cities
Acknowledgements

• Thomas Naselaris
 Associate Professor
 Medical University of South Carolina

• Emily Allen
 Postdoctoral Associate, UMN

• Yihan Wu
 Graduate Student, UMN

• Ben Hutchinson, Keith Jamison, Jason Yeatman, Ariel Rokem, Chris Racey, Ian Charest, Paul Schrater, ...

Funding provided by NSF
Outline

Why NSD?
What is in NSD?
Results thus far
Future outlook
Why NSD?

- Algonaughts... Benchmarks, models, code/data sharing, we’re on board!

- We need the best possible data. This is essential.

- **Goal 1:** To establish a massive benchmark dataset that can be used to answer a variety of scientific questions about vision

- **Goal 2:** To answer some scientific questions
Many recent ‘big data sharing’ efforts
- Algonauts
- Allen Brain Observatory
- BOLD5000
- Brain-Score
- DoctorWho
- HCP (Human Connectome Project)
- Individual Brain Charting
- Midnight Scan Club
- MyConnectome
- StudyForrest
- UK Biobank
- vim-1, vim-2
- (and others...)
How is NSD different?

- **Priority 1**: Big.
 - Large data per subject
 - Large number of subjects

- **Priority 2**: High SNR, high resolution.
 - 7T fMRI
 - Screen for the best subjects

- **Priority 3**: Push envelope on acquisition and analysis methods.

- **Priority 4**: Paranoid on details and documentation.
What is in NSD?

- **Type of data**
 - Functional data (7T)
 - NSD data (color natural scenes)
 - Resting-state data
 - Functional localizers (pRF mapping, category localizer)
 - Synthetic stimuli
 - Anatomical data (3T)
 - 6 T1s, 3 T2s
 - Diffusion
 - Angiogram, venogram
 - Behavioral data
 - Physiological data
- **Quantity of data**
 - 8 subjects
 - 40 hours of NSD data per subject
 - Whole-brain including cerebellum
 - 1.8-mm fMRI
- **Quality of data**
 - MRI image quality, imaging stability
 - Behavioral compliance (head motion, task performance)
 - Quality of BOLD response estimates
- **Value added by pre-processing**
 - Best possible spatial and temporal processing and denoising
 - Manually edited cortical surfaces and manually defined ROIs

fMRI acquisition details:
- 32-channel RF coil
- Caseforge headcases
- Whole-brain EPI (1.8 mm, 1.6 s, MB3, IPAT2)
- Multiple fieldmaps in each session

Adopt insights from sub-millimeter 0.8-mm fMRI
Kay, Jamison, Vizioli, Zhang, Margalit, Ugurbil
NeuroImage, 2019

Kendrick Kay, CMRR, University of Minnesota
The NSD experiment

- Images taken from Microsoft COCO database
- Stimulus size: 8.4 deg
- Presented via a linearized high-quality LCD monitor (BOLDscreen 32)
- Trial design: 3-s ON, 1-s OFF
- Task: for each image, indicate if it is
 new (1) (I’ve never seen it before)
 old (2) (I’ve seen before, either today or in a past scan session)
Screen for the best subjects

- BOLD signal strength varies substantially across subjects
- Let’s not waste scan time!
Leaderboard

• Keep tabs on:
 – BOLD activity
 – Behavioral performance
 – Head motion
Nearly perfect response rates
Remarkable recall performance
fMRI pre-processing

- One temporal interpolation
 (slice time correction, upsampling)

- One spatial interpolation
 (time-varying fieldmaps, gradient nonlinearities, head motion, upsampling)

Upsampling improves fine-scale detail

1.8 mm

1 mm

Kendrick Kay, CMRR, University of Minnesota
High measurement stability
High measurement stability
Robust and stable BOLD responses
Brain regions driven by NSD

Kendrick Kay, CMRR, University of Minnesota
GLM analysis

- Single-trial beta estimates
- HRF estimation for each voxel
- Data-driven denoising (GLMdenoise)
- Ridge regression to stabilize single-trial estimates
High SNR in voxel responses

\[\text{Noise Ceiling} = \frac{\sigma_{\text{signal}}^2}{\sigma_{\text{signal}}^2 + \sigma_{\text{noise}}^2} \]

David and Gallant, *J Neurophys*, 2005
Kay et al., *J Neurophys*, 2013
Lage-Castellanos et al., *PLOS Comp Bio*, 2019
High SNR in voxel responses
How can NSD data be used?

- Study representation of visual dimensions (orientation, spatial frequency, contrast, color, objects, scenes, etc.)
- Benchmark encoding models
- Train neural networks
- Characterize individual differences
- Topography and mapping
- Integration with other neuroimaging modalities
- Study short-term and long-term memory
- Investigate subcortical regions (LGN, cerebellum)
- Develop fMRI analysis methods
How can NSD data be used?

- Open questions for Algonauts and model benchmarking:
 - What types of models should we aim for?
 - RDMs? Individual units?
 - Group average or individual subjects?
 - What about spatial organization in the brain?
Take-home points

- NSD is a large 7T fMRI dataset with perception and memory of natural scenes
- Data are demonstrated to have high SNR, high resolution, and high stability
- NSD data can support a variety of uses including model benchmarking
- NSD data will be freely available: http://naturalscenesdataset.org