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Why NSD?

» Algonauts... Benchmarks, models, s

e

code/data sharing, we’re on board! B S

3 'I;tlg Algonauts Project

N o Exp,ﬂ_;_ ing the HumanVisual Brain .

.-.._!_____

* \We need the best possible data.
This Is essential.

 Goal 1: To establish a massive benchmark
dataset that can be used to answer a variety of
scientific questions about vision

 Goal 2: To answer some scientific questions



Why NSD?

* Many recent ‘big data sharing’ efforts
— Algonauts
— Allen Brain Observatory
— BOLDS5000
— Brain-Score
— DoctorWho
— HCP (Human Connectome Project)
— Individual Brain Charting
— Midnight Scan Club
— MyConnectome
— StudyForrest
— UK Biobank
— vim-1, vim-2
— (and others...)



How is NSD different?

* Priority 1: Big.
— Large data per subject
— Large number of subjects

* Priority 2: High SNR, high resolution.

— 7T fMRI
— Screen for the best subjects

* Priority 3: Push envelope on
acquisition and analysis methods.

* Priority 4: Paranoid on details and
documentation.
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What is in NSD?

 Type of data

— Functional data (7T) fMRI acquisition details:
NSD data (color natural scenes) * 32-channel RF coil
Resting-state data « Caseforge headcases
Functional localizers (pRF mapping, category localizer) * Whole-brain EPI (1.8 mm, 1.6 s, MB3, IPAT2)
Synthetic stimuli * Multiple fieldmaps in each session
— Anatomical data (3T)
e 6T1s,3T2s
Diffusion

Angiogram, venogram
— Behavioral data
— Physiological data

* Quantity of data

— 8 subjects
— 40 hours of NSD data per subject

— Whole-brain including cerebellum
- 1.8-mm fMRI

* Quality of data
— MRI image quality, imaging stability
— Behavioral compliance (head motion, task performance)

— Quality of BOLD response estimates Adopt insights from sub-millimeter 0.8-mm fMRI

* Value added by pre-processing __w Kay, Jamison, Vizioli, Zhang, Margalit, Ugurbil
— Best possible spatial and temporal processing and denoising ~ "e“e/mage. 2019
— Manually edited cortical surfaces and manually defined ROls

Kendrick Kay, CMRR, University of Minnesota



The NSD experiment

* |mages taken from Microsoft COCO database

« Stimulus size: 8.4 deg

* Presented via a linearized
high-quality LCD monitor (BOLDscreen 32)

* Trial design: 3-s ON, 1-s OFF

» Task: for each image, indicate if it is
*new” (1) (I've never seen it before)
*old* (2) (I've seen before, either today

or in a past scan session)
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Screen for the best subjects

« BOLD signal strength Subject 1

varies substantially 2
across subjects 2
5

| et's not waste scan time! 6
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Leaderboard

» Keep tabs on:
— BOLD activity
— Behavioral performance
— Head motion



Leaderboard
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Nearly perfect response rates
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Remarkable recall performance
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fMRI pre-processing

« One temporal interpolation
(slice time correction, upsampling)

 One spatial interpolation
(time-varying fieldmaps, gradient nonlinearities, head motion, upsampling)

Upsampling improves
fine-scale detalil

T mm
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High measurement stability




High measurement stability




Robust and stable BOLD responses




Brain regions driven by NSD
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GLM analysis

» Single-trial beta estimates

» HRF estimation for each voxel

» Data-driven denoising (GLMdenoise)

* Ridge regression to stabilize single-trial estimates

Derive global HRF manifold; select from 20 HRFs

avg adjacent r2 = 98.761

PC3

PC2

Kendrick Kay, CMRR, University of Minnesota



High SNR In voxel responses

2
. . Osignal
F Noise Ceiling = ————
Osignal TOnoise

O ci .
signal Onoise

David and Gallant, J Neurophys, 2005
Kay et al., J Neurophys, 2013
Lage-Castellanos et al., PLOS Comp Bio, 2019
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High SNR In voxel responses
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How can NSD data be used?

» Study representation of visual dimensions (orientation,
spatial frequency, contrast, color, objects, scenes, etc.)

 Benchmark encoding models

* Train neural networks

» Characterize individual differences

* [opography and mapping

 Integration with other neuroimaging modalities

» Study short-term and long-term memory

* |nvestigate subcortical regions (LGN, cerebellum)
* Develop fMRI analysis methods

Kendrick Kay, CMRR, University of Minnesota



How can NSD data be used?

* Open questions for Algonauts
and model benchmarking:
— What types of models should we aim for?

— RDMs? Individual units?
— Group average or individual subjects?

Neurolmage

Principles for models of neural information processing

Kendrick N. Kay

— What about spatial organization in the brain?

Kendrick Kay, CMRR, University of Minnesota




Take-nome points

 NSD is alarge 7T fMRI dataset with
perception and memory of natural scenes

» Data are demonstrated to have high RS

ﬂﬂﬂ " A,

SNR, high resolution, and high stability = |Ssee-ea

4

 NSD data can support a variety of uses
Including model benchmarking

 NSD data will be freely available:
http://naturalscenesdataset.org
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