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Reinforcement Learning, Fast and Slow

Matthew Botvinick,"?* Sam Ritter,’® Jane X. Wang,' Zeb Kurth-Nelson, > Charles Blundell,' and

Demis Hassabis'?

Deep reinforcement learning (RL) methods have driven impressive advances in
artificial intelligence in recent years, exceeding human performance in domains
ranging from Atari to Go to no-limit poker. This progress has drawn the atten-
tion of cognitive scientists interested in understanding human learning. How-
ever, the concern has been raised that deep RL may be too sample-inefficient -
that is, it may simply be too slow - to provide a plausible model of how humans
learn. In the present review, we counter this critique by describing recently
developed techniques that allow deep RL to operate more nimbly, solving
problems much more quickly than previous methods. Although these techni-
ques were developed in an Al context, we propose that they may have rich
implications for psychology and neuroscience. A key insight, arising from these
Al methods, concerns the fundamental connection between fast RL and slower,
more incremental forms of learning.

Powerful but Slow: The First Wave of Deep RL
Over just the past few years, revolutionary advances have occurred in artificial intelligence (Al)

research, where a resurgence in neural network or ‘deep learning’ methods [1,2] has fueled
hreakthraiinhe in imane 1inderatandina [2 41 natiiral lanaiiane nraceccinn (5 Al and manv nther

Highlights

Recent Al research has given rise to
powerful techniques for deep reinfor-
cement leaming. In their combination
of representation learning with reward-
driven behavior, deep reinforcement
leaming would appear to have inherent
interest for  psychology and
neuroscience.

One reservation has been that deep
reinforcement learning procedures
demand large amounts of training
data, suggesting that these algorithms
may differ fundamentally from those
underlying human learning.

While this concern applies to the initial
wave of deep RL technigues, subse-
quent Al work has established meth-
ods that allow deep RL systems to
learn more quickly and efficiently.
Two particularly interesting and pro-
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Abstract

Rich representations in reinforcement learning
have been studied for the purpose of enabling
generalization and making learning feasible in
large state spaces. We introduce Object-Oriented
MDPs (OO-MDPs), a representation based on
objects and their interactions, which is a natural
way of modeling environments and offers impor-
tant generalization opportunities. We introduce
a learning algorithm for deterministic OO-MDPs
and prove a polynomial bound on its sample
complexity. We illustrate the performance gains
of our representation and algorithm in the well-
known Taxi domain, plus a real-life videogame.

1. Introduction

In the standard Markov Decision Process (MDP) formal-
ization of the reinforcement-learning (RL) problem (Sut-
ton & Barto, 1998), a decision maker interacts with an en-
vironment consisting of finite state and action spaces. Al-
gorithms for RL in MDP environments suffer from what is
known as the curse of dimensionality: an exponential ex-
plosion in the total number of states as a function of the
number of state variables. Learning in environments with
extremely large state spaces is challenging if not infeasible
without some form of generalization. Exploiting the un-
derlying structure of a problem can enable generalization
and has long been recognized as important in representing

generalization. There are many ways of incorporating ob-
jects into models for learning and decision making —this
paper explores one particular approach as a first attempt to
understand the issues that arise.

Our representation has multiple connections with other for-
malisms proposed in the Relational Reinforcement Leamn-
ing literature (van Otterlo, 2005), but emphasizes simplic-
ity and tractability over expressive power. Our representa-
tion starts from attributes that can be directly perceived by
the agent, rather than predicates or propositions introduced
by the designer (although we allow the encoding of prior
knowledge in propositional form). A similar formalism,
relational MDPs (RMDPs), was introduced by Guestrin
et al. (2003) in the context of planning, and is based on
the same insight. While our formalism has similarities to
RMDPs, we introduce a number of changes, mainly in the
way transition dynamics are described, to enable efficient
leaming and generalization.

To present and test our approach, we first provide bench-
mark experiments in the well-known Taxi domain (Diet-
terich, 2000). We further demonstrate its applicability by
designing an agent that can solve an interesting problem in
the real-life videogame Pitfall* .

2. Notation

‘We use a standard Markov Decision Process (MDP) no-
tation throughout this paper (Puterman, 1994). A finite
MDP M is a five tuple (S,A,T,R,~). We use T'(s'|s,a)

AL S e ae_ a o tat_ 4 _acata . £ sl aa_

Capyright 1982

cf. Keramati et al., 2018; Cobo et al., 2013;
Garnelo et al., 2016; Lazaro-Gradillo et al., 2019;
Zambaldi, et al., 2018
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Abstract

The ability to decompose scenes in terms of abstract building blocks is crucial for
general intelligence. Where those basic building blocks share meaningful properties,
interactions and other regularities across scenes, such decompositions can simplify
reasoning and facilitate imagination of novel scenariocs. In particular, representing
perceptual observations in terms of entities should improve data efficiency and transfer
performance on a wide range of tasks. Thus we need models capable of discovering useful
decompositions of scenes by identifying units with such regularities and representing
them in a common format. To address this problem, we have developed the Multi-Object
Network (MONet). In this model, a VAE is trained end-to-end together with a recurrent
attention network — in a purely unsupervised manner — to provide attention masks
around, and reconstructions of, regions of images. We show that this model is capable of
learning to decompose and represent challenging 3D scenes into semantically meaningful
components, such as objects and background elements.
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SOME INFORMATIONAL ASPECTS OF VISUAL PERCEPTION
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The ideas of information theory are
at present stimulating many different
areas of psychological inquiry. In pro-
viding techniques for quantifying situa-
tions which have hitherto been difficult
or impossible to quantify, they suggest
new and more precise ways of concep-
tualizing these situations (see Miller
[12] for a general discussion and bibli-
ography). Events ordered in time are
particularly amenable to informational
analysis; thus language sequences are
being extensively studied, and other se-
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plications, is precisely equivalent to an
assertion that the world as we know it
is lawful. In the present discussion,
however, we shall restrict our attention
to special types of lawfulness which may
exist in space at a fixed time, and which
seem particularly relevant to processes
of visual perception.

THE NATURE OF REDUNDANCY
IN VISUAL STIMULATION:
A DEMONSTRATION

Consider the verv simple situation
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Bayesian learning of visual chunks

by human observers
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Efficient and versatile processing of any hierarchically structured
information requires a learning mechanism that combines lower-
level features into higher-level chunks. We investigated this chunk-
ing mechanism in humans with a visual pattern-learning paradigm.
We developed an ideal learner based on Bayesian model compar-

on abstract rule-based operations on lower-level features or
relies on associative learning of their cooccurrence statistics (10,
11). Here, we show that such implicit chunk learning cannot be
explamed by simple correlation-based associative learning

ison that extracts and stores only those chunks of information that
are minimally sufficient to encode a set of visual scenes. Our ideal
Bayesian chunk learner not only reproduced the results of a large
set of previous empirical findings in the di in of human pattern
Ienmlng but also made a key prediction that we confirmed exper-
lly. In d with Bayesian learning but contrary to
asﬂxianve learning, human performlnce was well abovo chance
when pair-wi: istics in the ined no rel
ion. Thus, h extract :hunks from complex vnsual
by g ing yet
and not by ding the full correlational structure of the input.

yesian inf Ip deling | vision

o ne of the most perplexing problems facing a human learner,
in domains as diverse as natural language acquisition or
visual object recognition, is representing in memory the rich and
hierarchically structured information present in almost every
aspect of our environment (1, 2). At the core of this problem lies
the task of discovering how the building blocks of a hierarchy at
one level, such as words or visual chunks, are constructed from
lower-level features, such as syllables or line segments (3, 4). For
example, in the domain of vision, many efficient object recog-
nition systems, both natural (5) and artificial (6), use small visual
fragments (chunks) to match the parts of an image. Successful
recognition of objects in these systems depends crucially on
determining which parts of the image match which chunks of the
prespecified inventory. However, extracting chunks from the
visual input for the construction of a proper inventory entails a
fundamental challenge: in any single visual scene, there are
multiple objects present, often without clear segregation because
of partial occlusion, clutter, and noise, and so chunks cannot be

20acil2ad tins Lii wabedan aa lan laval ccsdiales scan Tdanetant

rather, its characteristics can be both qualitatively
and quantitatively predicted by a Bayesian chunk learner (BCL).
The BCL forms chunks in a statistically principled way, without
any strong prior knowledge of the possible rules for their
construction, thus bridging the gap between low-level statistics
and abstract rules.

Past attempts to study the learning of statistics and rules have
been conducted in domains such as artificial grammar learning
(12, 13), serial reaction times (14, 15), word segmentation from
fluent speech (16, 17), and pattern abstraction from strings of
words (18, 19). In contrast, we focus on pattern learning from
multielement visual scenes (Fig. 1), because a number of subtle
structural manipulations that could tease apart competing mod-
cls of implicit learning have recently been conducted with such
stimuli using a well controlled paradigm (20-22). We exploit this
paradigm by fitting past data to the BCL and then generating a
key prediction from the BCL that we test empirically in a study
of human performance.

In our visual pattern-learning paradigm, we used “combos,”
combinations of shapes, as the building blocks of a series of
multiclement familiarization scenes (see Fig. 1 and Methods).
Just as any single natural scene is formed by multiple objects or
other coherent chunks, with the same object or chunk being
present in several scenes, there were multiple combos shown in
each familiarization scene, with the same combo reappearing
across multiple scenes. Importantly, neither the human partici-
pants nor the BCL was provided with any strong low-level
grouping cues identifying combos or any information about the
underlying structural rules by which the visual scenes were
constructed from these combos. Thus, this paradigm left statis-
tical contingencies among the recurring shapes in the familiar-
ization scenes as the only available cues reliably identifying
individual chunks; learning was unsupervised and based entirely
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Multi-Object Representation Learning with Iterative Variational Inference
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Loic Matthey* Matthew Botvinick® Alexander Lerchner?

Abstract

Human perception is structured around objects
which form the basis for our higher-level cogni-
tion and impressive systematic generalization abil-
ities. Yet most work on representation learning
focuses on feature leaming without even consider-
ing multipke objects, or treats segmentation as an
(often supervised) preprocessing step. Instead, we
argue for the importance of leamning to segment
and represent objects jointly. We demonstrate
that, starting from the simple assumption that a
scene is composed of multiple entities, it is possi-
ble to learn to segment images into interpretable
objects with disentangled representations. Our
method learns — without supervision — to inpaint
occluded parts, and extrapolates to scenes with
more objects and to unseen objects with novel fea-
ture combinations. We also show that, due to the
use of iterative variational inference, our system
is able to leam multi-modal posteriors for ambigu-
ous inputs and extends naturally to sequences.

d Y4 __ 2 ___4a°___

Input Image

Objects |

Figure 1. Object decomposition of an image from the CLEVR
dataset by IODINE. The model is able to decompose the image into
separate objects in an unsupervised manner, inpainting occluded
objects in the process (see slots (d), (¢) and (h)).

we maintain that discovery of objects in a scene should be
considered a crucial aspect of representation learning, rather
than treated as a separate problem.
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Kahneman & Treisman, 1984: Object Files

Object: x Object: y
Color: ... OO s
Shape: ... Shape: ...
SIZE: ... SIZE: ...
Orientation: ... Orientation: ...
Kind: ... Kind: ...

Green, Edwin James, and Jake Quilty-Dunn. "what is an object file?." The British Journal for the Philosophy of Science (2017).
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COBRA: Data-Efficient Model-Based RL through
Unsupervised Object Discovery and
Curiosity-Driven Exploration

Nicholas Watters ', Loic Matthey ', Matko Bosnjak’, Christopher P. Burgess' and Alexander Lerchner’
*Equal conerthution, *DeepMind

Data efficlency and robustness to task-irrelevant perturbations are long-standing challenges for deep re-
Inforcement learning algorithms. Here we Introduce a modular approach to addressing these challenges
in a continuous control environment, without using hand-crafted or supervised Information. Our Curlous
Object-Based seaRch Agent (COBRA) uses task-free Intrinsically motivated exploration and unsupervised
learning to build object-based models of its environment and action space. Subsequently, it can learn a
varlety of tasks through model-based search In very few steps and excel on structured hold-out tests of
policy robustness.

Keywords: Unsupervised learning, model-based RL, object-oriented MDP, curiosity, adversarial exploration

1. Introduction
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Discovering, Predicting, and Planning with Objects
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Abstract

We introduce a framework for model-based plan-
ning that predicts and plans with learned object
representations without supervision. The key idea
behind our approach is to frame model-based plan-
ning under the language of a factorized HMM
that processes a set of hidden states independently
and symmetrically. This approach gives us per-
mutation invariance, order invariance, and count
equivariance by collapsing the combinatorial com-
plexity along the object dimension. We show on

| e
a combinatorially complex block-stacking task =
that we are able to achieve almost three times the o X S | l
accuracy of a non-factorized model and achieve =L 7o “'?fiﬁ..c‘;\

comparable performance to an oracle model that
assumes access to object segmentations.

OP3 k;.i':'::-; |

1. Introduction

1 parnino a comnlex maninnlation task from raw visnal innnt



Goal Image SAVP 02P2 OP3(ours)

;

./
Object 0 P 3 Object
(rception Perception/




|
Klaus Greff

r

- ] \ w st 4 B Af‘
Nick Watters Irina Higgins Rishabh Kabra Malcolm Reynolds




