The Algonauts Project: Tutorial Day 1

Comparing Brains and DNNs: Theory of Science

Radoslaw Martin Cichy

Heated debate

	Critique	Endorsement
Overall potential	Limitations; divergence what a DNN and humans can do; different approach needed	Unprecedented opportunity, new convergence of cognitive science & AI; new framework
Explanation	DNNs may predict, but do not explain phenomena	Explanations of different kinds than usual; post-hoc explanations
Interpretation	DNNs are black boxes – opaque how each part contributes	Concede opaqueness; but in-silico experimentation
Biological realism	While inspired by the brain, in in in infinite ways DNN differ	Abstraction & idealization essential for modelling; today's DNNs starting point for increasing realism
Scientific validity	Current use of DNNs is unscientific because untheoretical	The origin of a model is irrelevant, other factors (e.g. predictive or explanatory power) cound

A bird's eye view from philosophy of science

Prediction

Akin to technology: tool and benchmark

Explanation

Akin to theory: kinds of explanation

Exploration Starting point for new theories

Overlooked, yet fundamental & ubiquitous

The two

major goals

of science

Claim 1: We need many models; theoretical desiderata

Theoretical desiderata = what we want a model to be for theoretical reasons

If target class is inhomogenous, no model fulfills all desiderata Cognitive phenomena are inhomogenous (evolution/experience).

 \Rightarrow There is no one perfect model. We need many models.

Claim 1: We need many models; non-theoretical desiderata

Non-theoretical desiderata = what we want a model to be for practical reasons

A perfect brain model that is incredibly slow to evaluate, hard to manipulate, ethically restricted An inexact model that is very fast, easy to manipulate, and ethically unproblematic

 \Rightarrow Non-theoretical desiderata often take precedence \Rightarrow DNNs appear attractive on many non-theoretical desiderata

Claim 2: Best models are diverse

Question:

Given many models for many desiderata – will they all be of the same kind (e.g. all DNNs) or all different?

Plausibility argument:

In any branch of science...

- ... at any degree of maturity...
- ... there are models of different kinds.

⇒ DNNs have a place in the diverse set of models in cognitive science

Claim 3: The origin of models is irrelevant

Challenge:

Scientific models are derived from theory to instantiate or test it

⇒ DNNs are not derived from theory, so they are not proper models

Reality check from scientific practise:

- Rarely deduced straight-forwardly from theory
- More art than logic
- No predefined set of rules
- Process involves creativity, chance and transfer
- Again: non-theoretical desiderata relevant
- \Rightarrow Origin of a model is irrelevant

⇒ DNN being hijacked by cognitive science akin to ready-mades is OK

(Duchamp 1917)

A bird's eye view from philosophy of science

Model nature Plurality, diversity & origin

Prediction Akin to technology: tool and benchmark

Explanation Akin to theory: kinds of explanation

Exploration Starting point for new theories

Claim 1: Use DNNs as a tool for practical aim

Without recurrence to explanation

Examples

Medical application
=> neural prothesis

• Experimental design optimization => experimental control

Example:

Neural population control via deep image synthesis

Pouya Bashivan*, Kohitij Kar*, James J. DiCarlo†

Evolving Images for Visual Neurons Using a Deep Generative Network Reveals Coding Principles and Neuronal Preferences

Claim 2: Benchmarking as stepping stone for explanation

		Score
Rank	Team Name	Average Noise Normalized R ² (%)
	Noise Ceiling	100
1	agustin	26.91
2	Aakash	24.89
3	rmldj	24.56
	•••	•••
24	AlexNet-OrganizerBaseline	7.41

 \Rightarrow Pre-select models by performance for further inquiry

 \Rightarrow Comparison of models can reveal factors relevant for success

 \Rightarrow Good prediction baseline for explanation of complex functions

A bird's eye view from philosophy of science

Model nature

Plurality, diversity & origin

Prediction Akin to technology: tool and benchmark

Explanation Akin to theory: kinds of explanation

Exploration Starting point for new theories

Exploratory power of DNNs – the challenge

The received view: mathematical-theoretical modelling

- Identify a few relevant variables
- Each variable identified a priori with part of phenomenon modelled
- Use math to model variables & their interaction

 \Rightarrow Changes in model variable directly interpretable as changes in the world

DNNs

- ~ millions of parameters
- Parameters learned rather than set a priori
- Relationship of variables to the world is opaque
- ⇒ DNNs are a black box. One cannot explain one black box (e.g. brain) by another one (DNN). Thus DNNs lack explanatory power.

Claim 1: DNNs provide teleological explanations

Teleological: From Greek telos (end, goal, purpose), related to a goal, aim or purpose

DNN

Question

Why does a unit behave such and such?

Answer

Because it fulfill its function in enabling a particular objective

Rather than

Because it represents this or that feature of the world

Brain Analogous exchanging "unit" for "neuron"

Claim 2: Appearance nonwithstanding DNNs offer standard vanilla explanations

DNNs defined by handful of parameters set a priori, e.g.

- architecture
- training material
- training procedure
- objective

Variables directly refer to phenomena in the world.

 \Rightarrow The model is thus transparent, and not a black box.

Claim 3: Strong potential for post-hoc explanations

Idea: Making DNNs transparent will enable explanatory power

Zhou et al., 2015 Yosinski et Zeiler & Fergus al., 2015 2013 Dog

Zhou et al., 2018

Analogy: model organisms in biology

Homo sapiens

A bird's eye view from philosophy of science

Model nature

Plurality, diversity & origin

Prediction

Akin to technology: tool and benchmark

Explanation Akin to theory: kinds of explanation

Exploration Starting point for new theories

Exploration: DNNs as starting point for new theories

With a fully-fledged theory, deriving hypotheses and testing them in experiments is the rule.

But what do you do when there is no fully-fledged theory?

 \Rightarrow Exploration

Claim 1: Exploration generates new hypotheses

Analogies (Mary Hesse)

Positive: characteristics we know model and target **do** share

Negative: characteristics we know model and target *do not share*

Neutral: characteristics of which we *do not know* whether they are shared

Brain – DNN example

Brains and DNNs have simple discrete entities (neurons/ units) as computational building blocks

Brains are made of sugars, lipids, proteins and water, DNNs not

Potential for learning new facts about the target

Claim 2: DNNs offer proof-of-principle demonstrations

Proof-of-principle demonstration

Demonstration that it works in theory by showing that it works in practise

Example

A purely feed-forward DNN predicts neural activity in IT well.

Upshot

⇒Feasibility invites further investigation of feed-forward solutions

Claim 3: Assessment of the suitability of the target

Example: Category – orthogonal properties (Hong et al., 2016)

DNN

Monkey IT

Caveats and limitations of DNN exploration

- 1) Standards for judging quality/success are less developed & implicit
- ⇒ Give DNNs benefit of the doubt to avoid curbing development prematurely
- 2) Same model: exporative in one context, explanatory in another
- \Rightarrow Clearly indicate how the model is used

3) Danger of mistaking the model for the world

 \Rightarrow Modelling must always be checked by experimentation

Summary

Model nature

Plurality

Trade-offs between desiderata (theoretical and non-theoretical)

Diversity

Co-existence and continuous success of diverse models anywhere in science

Origin

Irrelevant to scientific relevance of a model

Model use

Prediction

DNNs as tools to reach a practical aim

- Neural prothesis
- Experimental design development & optimization

Benchmarking as stepping stone to explanation

- Model selection for further inquiry
- └→ Model comparison

Explanation

DNNs as means to test hypotheses

- → Teleological type of explanation
- Mechanistic-theoretical explanation: DNNs defined by few interpretable parameters
- Opaqueness of DNNs an interim stage to be overcome by post-hoc explanations

Exploration

DNNs as starting points for new theories

- → Generation of new hypotheses via neutral analogies
- Proof-of-principle demonstrations motivate further inquiry
- Assessment of the suitability of the target

Cichy & Kaiser, TICS 2019